不断演进的无源光网络(PON)需要FPGA设计的灵活性支持
能够提供技术性设计和经济方面的优势,尤其是在网络侧的中心局(CO)基础设施端。
2002年之前,低性能的FPGA大多数都用在原型创建工具。而如今的FPGA具有强大的性能和丰富的功能,能更好地满足日益提高的PON设计需求。另外,更低设计成本、灵活和可扩展的FPGA对于竞争非常激烈的无源光网络市场来说也是关键。
PON是点到多点(P2MP)光纤到驻地(FTTP)的网络拓扑技术,也常被定义为光纤到路边(FTTC)和光纤到家庭(FTTH)。在PON定义中采用了FTTP或CPE(用户驻地设备)。通过无需供电或无源的光分离器,单路光纤可以服务于多个驻地。分离器通常为32路,不过有时会多达64路。一个PON网络包括一个位于业务提供商中心局的光线路终端(OLT)和众多的光网络终端(ONT),后者也被称为进入驻地的光网络单元(ONU)。
下行的OLT信号以广播方式送到共享一根光纤的各个ONT。目前的PON标准规定下行的数据率高达2.5Gb/s(Gbps)。上行信号则利用时分多路(TDM)技术组合在一起。与数字用户线(DSL)或电缆相比,PON具有无可比拟的带宽优势,能够给大家提供高速三重播放业务(语音,视频和数据)。
根据Infonetics的预测,到2010年,北美和亚太地区PON用户的年度复合增长率可高达150%。吉比特PON(GPON)在北美正在取得强劲的增长,而以太网PON (EPON)主要用在日本。日本政府的津贴政策正在推动PON市场的逐年增长,而中国正在仔细权衡EPON和GPON的优劣。
宽带PON(BPON)或者国际通信联盟(ITU-T) G.983x是流行的美国PON标准。其最大下行数据速率为622Mb(Mbps),上行数据率为155 Mbps。安装在光纤链路中的无源分离器允许一根光纤最多连接64个家庭。今年,GPON或ITU-T G.984,即BPON的演进版本,有望进入更多的美国家庭。它支持TDM和分组数据,下行和上行数据率最高分别可达2.5 Gbps和1.24Gbps。GPON的关键优点是无需增加IP就能支持交换式数字视频和原有的TDM语音。
不管哪种标准,用于提供宽带接入的PON系统具有高度的成本敏感度。DSL是目前使用最为广泛的宽带接入技术。由于具有庞大的用户数量,DSL为每端口设置了极低的成本标杆。因此,DSL对PON提出了强大的挑战。不过PON系统在过去两年里在减少相关成本和增强功能方面也取得了长足的发展。
随着PON市场的发展,系统级OEM厂商和运营商正重视其成本的降低,尤其是OLT的成本。在ONT侧,数量有望增加到百万台,因为PON将为数以百万计的驻地提供服务。许多ASIC和ASSP供应商盯上了ONT,并提供各种芯片产品。由于ONT是一个量很大的市场,ASIC和ASSP芯片厂商可以帮助减少相关成本,从而帮助系统级OEM和运营商提供较低的价格。
另一方面,OLT系统数量为数万台而非数百万台,故成本比较高。例如,PON家用调制解调器的成本为100到300美金,而PON网络中OLT系统的成本则高达10000美金。实际上,OLT的成本对运营商来说极为关键,因此大都集成了多端口线路卡,能处理慢慢的变多的驻地数量。
OLT线路卡的期望数量在可预见的未来将保持在中等到较低的水平,这有两个原因。首先,64个ONT只需要一个OLT,其次,每个OLT线个OLT端口。于是,OLT线路卡的数量和所用的元器件要远远少于大批量的ONT设备。
设计复杂性使成本问题更严重。PON OLT和ONT拓扑结构是一个共享的媒体架构,这为系统OEM设计师提出了挑战。由于PON标准中采用了TDM技术,因此OLT和各个ONT之间的交互很复杂。TDM用来共享不同驻地间的容量。早期的PON标准使用静态TDM,因此每个驻地接收相同的容量。
但是,最新的PON规定要求可以依据驻地的需求变化,为不同的驻地动态分配容量。这种动态带宽分配(DBA)功能需要利用ONT和OLT之间传送的信令通知OLT每个ONT所需的容量。OLT也需要将分配的容量通知给每个ONT。该协议基于从ONT到OLT的请求消息。OLT确定最佳的容量分配,并用确认消息予以响应。
另外,与较简单的点对点以太网端口不同的是,由于存在动态TDM要求,PON端口是一种更复杂的P2MP。因此OLT端口必须在多个ONT驻地之间进行连续切换。每个ONT分配得到32或64个可用时隙中的一个与OLT进行交互通信。OLT必须快速且连续地依次锁定到每个ONT数据流上,用的是众所周知的突发模式。为了支持这一极快的锁定方案,需要一个高度专用的媒体访问控制器(MAC)、串行/解串器(SerDes)以及时钟和数据恢复(CDR)功能。为了协调对每个ONT的访问,PON MAC尤其重要。
针对上述背景,系统级OEM厂商在实现低成本和高效的OLT设计方面可选择性很少。一种方法是选用ASIC技术。但这种方法的投资所需成本极高。由于一些原因,ASSP也无法较好地实现。ASSP在支持PON演进需求方面的灵活性有限,缺乏设计可扩展性,并且功耗随着时钟速率的升高而升高。ASSP在提供可竞争的差异化产品方面的能力也很有限,还面临着器件停产的风险。另外,拥有成本也慢慢变得高,上市时间较长。
然而,FPGA却能为OLT的设计提供低成本高效率的开发平台。当设计无缝移植到结构化ASIC进行大批量生产时成本还能逐步降低。这种方法由于省去了大型且耗时的ASIC开发,系统OEM厂商可以省去较大的成本,并缩短上市时间。
像Stratix这类FPGA器件,能够为实现和集成主要的OLT线)提供所需的高性能逻辑。而且,FPGA也是用于实现CO OLT或者ONT用户驻地端EPON和GPON MAC的可选技术。另外,可以在一片FPGA中集成PHY和MAC,从而在一个芯片上实现虚拟线路卡。FPGA中先进的高效率内核矩阵基于的是被称为自适应逻辑模块(ALM)的创新逻辑单元。